Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Environ Sci Technol ; 56(10): 6369-6379, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35522992

RESUMO

Microbial reduction of soluble hexavalent uranium (U(VI)) to sparingly soluble tetravalent uranium (U(IV)) has been explored as an in situ strategy to immobilize U. Organic ligands might pose a potential hindrance to the success of such remediation efforts. In the current study, a set of structurally diverse organic ligands were shown to enhance the dissolution of crystalline uraninite (UO2) for a wide range of ligand concentrations under anoxic conditions at pH 7.0. Comparisons were made to ligand-induced U mobilization from noncrystalline U(IV). For both U phases, aqueous U concentrations remained low in the absence of organic ligands (<25 nM for UO2; 300 nM for noncrystalline U(IV)). The tested organic ligands (2,6-pyridinedicarboxylic acid (DPA), desferrioxamine B (DFOB), N,N'-di(2-hydroxybenzyl)ethylene-diamine-N,N'-diacetic acid (HBED), and citrate) enhanced U mobilization to varying extents. Over 45 days, the ligands mobilized only up to 0.3% of the 370 µM UO2, while a much larger extent of the 300 µM of biomass-bound noncrystalline U(IV) was mobilized (up to 57%) within only 2 days (>500 times more U mobilization). This work shows the potential of numerous organic ligands present in the environment to mobilize both recalcitrant and labile U forms under anoxic conditions to hazardous levels and, in doing so, undermine the stability of immobilized U(IV) sources.


Assuntos
Compostos de Urânio , Urânio , Biomassa , Ligantes , Oxirredução , Urânio/química , Compostos de Urânio/química
2.
Inorg Chem ; 61(22): 8455-8466, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608075

RESUMO

Hydrogen peroxide is produced upon radiolysis of water and has been shown to be the main oxidant driving oxidative dissolution of UO2-based nuclear fuel under geological repository conditions. While the overall mechanism and speciation are well known for granitic groundwaters, considerably less is known for saline waters of relevance in rock salt or during emergency cooling of reactors using seawater. In this work, the ternary uranyl-peroxo-chloro and uranyl-peroxo-bromo complexes were identified using IR, Raman, and nuclear magnetic resonance (NMR) spectroscopy. Based on Raman spectra, the estimated stability constants for the identified uranyl-peroxo-chloro ((UO2)(O2)(Cl)(H2O)2-) and uranyl-peroxo-bromo ((UO2)(O2)(Br)(H2O)2-) complexes are 0.17 and 0.04, respectively, at ionic strength ≈5 mol/L. It was found that the uranyl-peroxo-chloro complex is more stable than the uranyl-peroxo-bromo complex, which transforms into studtite at high uranyl and H2O2 concentrations. Studtite is also found to be dissolved at a high ionic strength, implying that this may not be a stable solid phase under very saline conditions. The uranyl-peroxo-bromo complex was shown to facilitate H2O2 decomposition via a mechanism involving reactive intermediates.


Assuntos
Compostos de Urânio , Peróxido de Hidrogênio/química , Espectroscopia de Ressonância Magnética , Oxidantes/química , Oxirredução , Compostos de Urânio/química
3.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884428

RESUMO

Cytochrome c3 (uranyl reductase) from Desulfovibrio vulgaris can reduce uranium in bacterial cells and in cell-free systems. This gene was introduced in tobacco under control of the RbcS promoter, and the resulting transgenic plants accumulated uranium when grown on a uranyl ion containing medium. The uptaken uranium was detected by EM in chloroplasts. In the presence of uranyl ions in sublethal concentration, the transgenic plants grew phenotypically normal while the control plants' development was impaired. The data on uranium oxidation state in the transgenic plants and the possible uses of uranium hyperaccumulation by plants for environmental cleanup are discussed.


Assuntos
Grupo dos Citocromos c/genética , Desulfovibrio vulgaris/metabolismo , Compostos de Urânio/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Cloroplastos , Grupo dos Citocromos c/metabolismo , Engenharia Genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , /metabolismo
4.
Molecules ; 26(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34946761

RESUMO

The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop-)] with cadmium(II), copper(II) and uranyl(VI) were studied in NaCl(aq) at different ionic strengths (0 ≤ I/mol dm-3 ≤ 1.0) and temperatures (288.15 ≤ T/K ≤ 318.15). From the elaboration of the experimental data, it was found that the speciation models are featured by species of different stoichiometry and stability. In particular for cadmium, the formation of only MLH, ML and ML2 (M = Cd2+; L = dopamine) species was obtained. For uranyl(VI) (UO22+), the speciation scheme is influenced by the use of UO2(acetate)2 salt as a chemical; in this case, the formation of ML2, MLOH and the ternary MLAc (Ac = acetate) species in a wide pH range was observed. The most complex speciation model was obtained for the interaction of Cu2+ with dopamine; in this case we observed the formation of the following species: ML2, M2L, M2L2, M2L2(OH)2, M2LOH and ML2OH. These speciation models were determined at each ionic strength and temperature investigated. As a further contribution to this kind of investigation, the ternary interactions of dopamine with UO22+/Cd2+ and UO22+/Cu2+ were investigated at I = 0.15 mol dm-3 and T = 298.15K. These systems have different speciation models, with the MM'L and M2M'L2OH [M = UO22+; M' = Cd2+ or Cu2+, L = dopamine] common species; the species of the mixed Cd2+ containing system have a higher stability with respect the Cu2+ containing one. The dependence on the ionic strength of complex formation constants was modelled by using both an extended Debye-Hückel equation that included the Van't Hoff term for the calculation of the formation enthalpy change values and the Specific Ion Interaction Theory (SIT). The results highlighted that, in general, the entropy is the driving force of the process. The quantification of the effective sequestering ability of dopamine towards the studied cations was evaluated by using a Boltzmann-type equation and the calculation of pL0.5 parameter. The sequestering ability was quantified at different ionic strengths, temperatures and pHs, and this resulted, in general, that the pL0.5 trend was always: UO22+ > Cu2+ > Cd2+.


Assuntos
Cádmio/química , Cobre/química , Dopamina/química , Cloreto de Sódio/química , Termodinâmica , Compostos de Urânio/química , Cátions/química , Estrutura Molecular , Concentração Osmolar
5.
Biomolecules ; 11(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34439805

RESUMO

Three novel 2-aminopyrazine Schiff bases derived from salicylaldehyde derivatives and their uranyl complexes were synthesized and characterized by elemental analysis, UV-vis, FTIR, molar conductance, and thermal gravimetric analysis (TGA). The proposed structures were optimized using density functional theory (DFT/B3LYP) and 6-311G ∗(d,p) basis sets. All uranyl complexes are soluble in DMSO and have low molar conductance, which indicates that all the complexes are nonelectrolytes. The DNA binding of those Schiff bases and their uranyl complexes was studied using UV-vis spectroscopy, and screening of their ability to bind to calf thymus DNA (CT-DNA) showed that the complexes interact with CT-DNA through an intercalation mode, for which the Kb values ranged from 1 × 106 to 3.33 × 105 M-1. The anticancer activities of the Schiff base ligands and their uranyl complexes against two ovarian (Ovcar-3) and melanoma cell lines (M14) were investigated, and the results indicated that uranyl complexes exhibit better results than the Schiff base ligands. Molecular docking identified the distance, energy account, type, and position of links contributing to the interactions between these complexes and two different cancer proteins (3W2S and 2OPZ).


Assuntos
Antineoplásicos/síntese química , Complexos de Coordenação/síntese química , Substâncias Intercalantes/síntese química , Bases de Schiff/síntese química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Aldeídos/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , DNA/química , DNA/metabolismo , Teoria da Densidade Funcional , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Concentração Inibidora 50 , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pirazinas/química , Bases de Schiff/metabolismo , Bases de Schiff/farmacologia , Solubilidade , Compostos de Urânio/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
6.
Toxicol Lett ; 351: 10-17, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363895

RESUMO

A rostro-caudal gradient of uranium (U) in the brain has been suggested after its inhalation. To study the factors influencing this mapping, we first used 30-min acute inhalation at 56 mg/m3 of the relatively soluble form UO4 in the rat. These exposure parameters were then used as a reference in comparison with the other experimental conditions. Other groups received acute inhalation at different concentrations, repeated low dose inhalation of UO4 (10 exposures) or acute low dose inhalation of the insoluble form UO2. At 24 h after the last exposure, all rats showed a brain U accumulation with a rostro-caudal gradient as compared to controls. However, the total concentration to the brain was greater after repeated exposure than acute exposure, demonstrating an accumulative effect. In comparison with the low dose soluble U exposure, a higher accumulation in the front of the brain was observed after exposure to higher dose, to insoluble particles and following repetition of exposures, thus demonstrating a dose effect and influences of solubility and repetition of exposures. In the last part, exposure to ultrafine U particles made it possible to show 24 h after exposure the presence of U in the brain according to a rostro-caudal gradient. Finally, the time-course after exposure to micronic or nanometric U particles has revealed greater residence times for nanoparticles.


Assuntos
Encéfalo/metabolismo , Compostos de Urânio/administração & dosagem , Compostos de Urânio/metabolismo , Administração Intranasal , Aerossóis , Animais , Masculino , Tamanho da Partícula , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Solubilidade , Compostos de Urânio/química
7.
J Recept Signal Transduct Res ; 41(1): 59-66, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32611220

RESUMO

Stability constants prediction plays a critical role in the identification and optimization of ligand design for selective complexation of metal ions in solution. Thus, it is important to assess the potential of metal-binding ligand organic in the complex formation process. However, quantitative structure-activity/property relationships (QSAR/QSPR) provide a time-and cost-efficient approach to predict the stability constants of compounds. To this end, we applied a free alignment three-dimensional QSPR technique by generating GRid-INdependent Descriptors (GRINDs) to rationalize the underlying factors effecting on stability constants of transition metals; 105 (Y3+), 186 (La3+), and 66 (UO2 2+) with diverse organic ligands in aqueous solutions at 298 K and an ionic strength of 0.1 M. Kennard- Stone algorithm was employed to split data set to a training set of 75% molecules and a test set of 25% molecules. Fractional factorial design (FFD) and genetic algorithm (GA) applied to derive the most relevant and optimal 3 D molecular descriptors. The selected descriptors using various feature selection were correlated with stability constants by partial least squares (PLS). GA-PLS models were statistically validated ( R 2 = 0.96, q2 = 0.82 and R2 pred=0.81 for Y3+; R 2 = 0.90, q2 = 0.73 and R2 pred=0.82 for La3+ and R 2 = 0.95, q2 = 0.81 and R2 pred=0.88 for UO2 2+), and from the information derived from the graphical results confirmed that hydrogen bonding properties, shape, size, and steric effects are the main parameters influencing stability constant of metal complexation. The provided information in this research can predict the stability constant of the new organic ligand with the transition metals without experimental processes.


Assuntos
Complexos de Coordenação/química , Lantânio/química , Compostos de Urânio/química , Ítrio/química , Algoritmos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Compostos Orgânicos/química , Relação Quantitativa Estrutura-Atividade
8.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187172

RESUMO

EXAFS spectroscopy is one of the most used techniques to solve the structure of actinoid solutions. In this work a systematic analysis of the EXAFS spectra of four actinyl cations, [UO2]2+, [NpO2]2+, [NpO2]+ and [PuO2]2+ has been carried out by comparing experimental results with theoretical spectra. These were obtained by averaging individual contributions from snapshots taken from classical Molecular Dynamics simulations which employed a recently developed [AnO2]2+/+ -H2O force field based on the hydrated ion model using a quantum-mechanical (B3LYP) potential energy surface. Analysis of the complex EXAFS signal shows that both An-Oyl and An-OW single scattering paths as well as multiple scattering ones involving [AnO2]+/2+ molecular cation and first-shell water molecules are mixed up all together to produce a very complex signal. Simulated EXAFS from the B3LYP force field are in reasonable agreement for some of the cases studied, although the k= 6-8 Å-1 region is hard to be reproduced theoretically. Except uranyl, all studied actinyls are open-shell electron configurations, therefore it has been investigated how simulated EXAFS spectra are affected by minute changes of An-O bond distances produced by the inclusion of static and dynamic electron correlation in the quantum mechanical calculations. A [NpO2]+-H2O force field based on a NEVPT2 potential energy surface has been developed. The small structural changes incorporated by the electron correlation on the actinyl aqua ion geometry, typically smaller than 0.07 Å, leads to improve the simulated spectrum with respect to that obtained from the B3LYP force field. For the other open-shell actinyls, [NpO2]2+ and [PuO2]2+, a simplified strategy has been adopted to improve the simulated EXAFS spectrum. It is computed taking as reference structure the NEVPT2 optimized geometry and including the DW factors of their corresponding MD simulations employing the B3LYP force field. A better agreement between the experimental and the simulated EXAFS spectra is found, confirming the a priori guess that the inclusion of dynamic and static correlation refine the structural description of the open-shell actinyl aqua ions.


Assuntos
Netúnio/química , Óxidos/química , Espectrofotometria/métodos , Compostos de Urânio/química , Urânio/química , Água/química , Cátions , Simulação por Computador , Concentração de Íons de Hidrogênio , Íons , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Teoria Quântica , Reprodutibilidade dos Testes
9.
Mikrochim Acta ; 187(5): 311, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32367432

RESUMO

A superior electrochemical biosensor was designed for the determination of UO22+ in aqueous solution by integration of DNAzyme and DNA-modified gold nanoparticle (DNA-AuNP) network structure. Key features of this method include UO22+ inducing the cleavage of the DNAzyme and signal amplification of DNA-AuNP network structure. In this electrochemical method, the DNA-AuNP network structure can be effectively modified on the surface of gold electrode and then employed as an ideal signal amplification unit to generate amplified electrochemical response by inserting a large amount of electrochemically active indicator methylene blue (MB). In the presence of UO22+, the specific sites on DNA-AuNP network structure can be cleaved by UO22+, releasing the DNA-AuNP network structure with detectable reduction of electrochemical response intensity. The electrochemical response intensity is related to the concentration of UO22+. The logarithm of electrochemical response intensity and UO22+ concentration showed a wide linear range of 10~100 pM, and the detection limit reached 8.1 pM (S/N = 3). This method is successfully used for determination of UO22+ in water samples. Graphical abstract Fabricated DNAzyme network structure for enhanced electrical signal. Numerical experiments show that the current signal decreases as the concentration of UO22+ increases. It can be seen that the biosensors could be used to detect UO22+ in aqueous solution effectively.


Assuntos
Técnicas Biossensoriais/métodos , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Compostos de Urânio/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Ouro/química , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Azul de Metileno/química , Reprodutibilidade dos Testes , Rios/química , Compostos de Urânio/química , Poluentes Químicos da Água/química
10.
Biomolecules ; 10(3)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32187982

RESUMO

The widespread use of uranium for civilian purposes causes a worldwide concern of its threat to human health due to the long-lived radioactivity of uranium and the high toxicity of uranyl ion (UO22+). Although uranyl-protein/DNA interactions have been known for decades, fewer advances are made in understanding their structural-functional impacts. Instead of focusing only on the structural information, this article aims to review the recent advances in understanding the binding of uranyl to proteins in either potential, native, or artificial metal-binding sites, and the structural-functional impacts of uranyl-protein interactions, such as inducing conformational changes and disrupting protein-protein/DNA/ligand interactions. Photo-induced protein/DNA cleavages, as well as other impacts, are also highlighted. These advances shed light on the structure-function relationship of proteins, especially for metalloproteins, as impacted by uranyl-protein interactions. It is desired to seek approaches for biological remediation of uranyl ions, and ultimately make a full use of the double-edged sword of uranium.


Assuntos
Proteínas de Transporte/química , Metaloproteínas/química , Modelos Moleculares , Compostos de Urânio/química , Relação Estrutura-Atividade
11.
Chemosphere ; 249: 126116, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32058132

RESUMO

The present studies interpret the speciation of uranyl (UO22+) with the most ubiquitous class of natural species named pyrazines in terms of stability, speciation and its identification, thermodynamics, spectral properties determined by a range of experimental techniques and further evidenced by theoretical insights. UO22+ forms ML and ML2 kind of species with a qualitative detection of ML3 species, while the ESI-MS identified the formation of all the complexes including ML3. Both the ligands act as bidentate chelators with a difference in ring size and coordinating atoms in the complex formed. The ML3 complexes involve the third ligand participation as monodentate via carboxylate only due to the restricted coordination number and space around the UO22+ ion to accommodate three ligand molecules in its primary coordination sphere. All the complexes are found to be endothermic and purely entropy driven formations. The complex formations showed redshift in the absorption spectra and the shift was further enhanced from ML to ML2 formation. The UO22+ ion redox properties are used to explore the redox potential and heterogeneous electron-transfer kinetic parameters as a function of pH and concentration of UO22+ in presence of pyrazine carboxylates. Interestingly, the cyclic voltammograms identified the ligands also as redox sensitive. The theoretical calculation gave inputs to understand the complex formation at the molecular level with major emphasis on geometry optimization, energetics, bonding parameters, molecular orbital diagrams and bond critical point analyses. The experimental observations in combination with theoretical addendum provided detailed knowledge on the interaction of UO22+ with pyrazine-2-carboxylate and pyrazine-2,3-dicarboxylates.


Assuntos
Pirazinas/química , Urânio/química , Poluentes Químicos da Água/química , Ácidos Carboxílicos , Cinética , Ligantes , Oxirredução , Termodinâmica , Compostos de Urânio/química
12.
Environ Geochem Health ; 42(8): 2547-2556, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31858357

RESUMO

Uranium is a contaminant of major concern across the US Department of Energy complex that served a leading role in nuclear weapon fabrication for half a century. In an effort to decrease the concentration of soluble uranium, tripolyphosphate injections were identified as a feasible remediation strategy for sequestering uranium in situ in contaminated groundwater at the Hanford Site. The introduction of sodium tripolyphosphate into uranium-bearing porous media results in the formation of uranyl phosphate minerals (autunite) of general formula {X1-2[(UO2)(PO4)]2-1·nH2O}, where X is a monovalent or divalent cation. The stability of the uranyl phosphate minerals is a critical factor that determines the long-term effectiveness of this remediation strategy that can be affected by biogeochemical factors such as the presence of bicarbonates and bacterial activity. The objective of this research was to investigate the effect of bicarbonate ions present in the aqueous phase on Ca-autunite dissolution under anaerobic conditions, as well as the role of metal-reducing facultative bacterium Shewanella oneidensis MR1. The concentration of total uranium determined in the aqueous phase was in direct correlation to the concentration of bicarbonate present in the solution, and the release of Ca, U and P into the aqueous phase was non-stoichiometric. Experiments revealed the absence of an extensive biofilm on autunite surface, while thermodynamic modeling predicted the presence of secondary minerals, which were identified through microscopy. In conclusion, the dissolution of autunite under the conditions studied is susceptible to bicarbonate concentration, as well as microbial presence.


Assuntos
Bicarbonatos/química , Shewanella/metabolismo , Urânio/química , Anaerobiose , Água Subterrânea , Minerais/química , Minerais/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Polifosfatos , Solubilidade , Termodinâmica , Urânio/metabolismo , Compostos de Urânio/química , Compostos de Urânio/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
13.
J Inorg Biochem ; 203: 110936, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31864150

RESUMO

Uranium is an element belonging to the actinide series. It is ubiquitous in rock, soil, and water. Uranium is found in the ecosystem due to mining and milling industrial activities and processing to nuclear fuel, but also to the extensive use of phosphate fertilizers. Understanding uranium binding in vivo is critical, first to deepen our knowledge of molecular events leading to chemical toxicity, but also to provide new mechanistic information useful for the development of efficient decorporation treatments to be applied in case of intoxication. The most stable form in physiological conditions is the uranyl cation (UO22+), in which uranium oxidation state is +VI. This short review presents uranyl coordination properties and chelation, and what is currently known about uranium binding to proteins. Although several target proteins have been identified, the UO22+ binding sites have barely been identified. Biomimetic approaches using model peptides are good options to shed light on high affinity uranyl binding sites in proteins. A strategy based on constrained cyclodecapeptides allowed recently to propose a tetraphosphate binding site for uranyl that provides an affinity similar to the one measured with the phosphoprotein osteopontin.


Assuntos
Materiais Biomiméticos/química , Compostos Organometálicos/química , Peptídeos/metabolismo , Compostos de Urânio/química , Complexos de Coordenação/química , Peptídeos/química , Ligação Proteica
14.
Chem Asian J ; 14(23): 4246-4254, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571387

RESUMO

A new coordination polymer (H2 bpy)0.5 ⋅[(UO2 )1.5 (ipa)2 (H2 O)] (1) (H2 ipa=isophthalic acid, bpy=4,4'-bipyridine) was synthesized by hydrothermal condition. It was characterized by IR spectroscopy, elemental analysis, TG-DTA analysis, and powder X-ray diffraction. Analysis of single-crystal X-ray diffraction results showed that the title compound exhibited a double chain bridged by the different uranyl ions and ipa2- ligands. Through the hydrogen bond interactions and π⋅⋅⋅π stacking interactions, the double chains were assembled into the three-dimensional supramolecular framework. Furthermore, the compound can be used as a promising bifunctional luminescence sensor for detecting and identifying Fe3+ and tetracycline hydrochloride antibiotic molecules with high selectivity and sensitivity in aqueous solutions. Moreover, the luminescent sensing mechanisms for different analytes were proposed. Moreover, the electronic properties of title compound were explored by density functional theory (DFT) calculations. The sensor system has been successfully applied for the detection of Fe3+ and tetracycline hydrochloride with high recovery percentages and low relative standard deviation in real river water samples.


Assuntos
Compostos Férricos/análise , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Tetraciclina/análise , Água/química , Ligantes , Polímeros/química , Teoria Quântica , Espectrometria de Fluorescência , Compostos de Urânio/química
15.
Mikrochim Acta ; 186(8): 501, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270687

RESUMO

Porous uranium oxide hollow sphere nanoparticles were synthesized in ionic liquids under hydrothermal conditions. Various precipitating agents and ionic liquids were investigated to determine their respective impact on the resultant uranium oxide morphologies. Using hydrazine hydrate as precipitating agent and N-butyl pyridinium bromide as templating agent, a porous-hollow structure was created with a surface area of 1958 m2.g-1 and an average pore diameter of 30 nm. The nanoparticles revealed high peroxidase-mimicking activity. This was evaluated by using the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) that is catalytically oxidized by H2O2 to give oxidized TMB (oxTMB) which is blue (with an absorption peak at 652 nm). The material was used as a nanozyme for colorimetric detection of Sn2+. Meanwhile, it is found that BSA strongly improves the catalytic activity of the nanozyme, while Sn(II) inhibits its activity. Thus, a colorimetric method for Sn2+ detection was designed. The method works in the 0.5-100 µM Sn(II) concentration range and has a lower detection limit of 0.36 µM (at S/N = 3). Graphical abstract The catalytic activity of porous-hollow nano-UO2 toward the oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2 is remarkably improved in the presence of bovine serum albumin, while tin(II) inhibits its activity. This finding has been applied to design a method for colorimetric quantification of tin(II) in water samples.


Assuntos
Nanosferas/química , Peroxidase/química , Estanho/análise , Compostos de Urânio/química , Benzidinas/química , Biomimética , Catálise , Colorimetria , Peróxido de Hidrogênio/química , Líquidos Iônicos/química , Porosidade , Estanho/química
16.
Environ Sci Process Impacts ; 21(7): 1174-1183, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31187835

RESUMO

The terminal oxygen atoms of the pyrophosphate groups in the uranyl peroxide nanocluster U24Pp12 ([(UO2)24(O2)24(P2O7)12]48-) are not fully satisfied by bond valence considerations and can become protonated. This functionality could allow for specific interactions with mineral surfaces, as opposed to the electrostatically-driven interactions observed between non-functionalized uranyl peroxide nanoclusters and mineral surfaces. The sorption of U24Pp12 to goethite and hematite was studied using batch sorption experiments as a function of U24Pp12 concentration, mineral concentration, and pH. A suite of spectroscopic techniques, scanning electron microscopy, and electrophoretic mobility measurements were used to examine the minerals before and after reaction with U24Pp12, leading to a proposed conceptual model for U24Pp12 interactions with goethite. The governing rate laws were determined and compared to those previously determined for a non-functionalized uranyl peroxide nanocluster. The rate of uranyl peroxide nanocluster sorption depends on the charge density and functionalized component of the uranyl peroxide cage. Electrophoretic mobility and attenuated total reflectance Fourier transform infrared spectroscopy analyses show that an inner-sphere complex forms between the U24Pp12 cluster and the goethite surface through the terminal pyrophosphate groups, leading to a proposed conceptual model in which U24Pp12 interacts with the triply-coordinated reactive sites on the (110) plane of goethite. These results demonstrate that the behavior of U24Pp12 at the iron (hydr)oxide-water interface is unique relative to interactions of the uranyl ion and non-functionalized uranyl peroxide nanoclusters.


Assuntos
Difosfatos/química , Compostos Férricos/química , Compostos de Ferro/química , Minerais/química , Modelos Teóricos , Nanoestruturas/química , Compostos de Urânio/química , Adsorção , Eletricidade Estática
17.
Anal Chem ; 91(10): 6608-6615, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31016961

RESUMO

The uranyl-dependent DNAzyme 39E cleaves its nucleic acid substrate in the presence of uranyl ion (UO22+). It has been widely utilized in many sensor designs for selective and sensitive detection of UO22+ in the environment and inside live cells. In this work, by inserting a flexible linker (C3 Spacer) into one critical site (A20) of the 39E catalytic core, we successfully enhanced the original catalytic activity of 39E up to 8.1-fold at low UO22+ concentrations. Applying such a modified DNAzyme (39E-A20-C3) in a label-free fluorescent sensor for UO22+ detection achieved more than 1 order of magnitude sensitivity enhancement over using native 39E, with the UO22+ detection limit improved from 2.6 nM (0.63 ppb) to 0.19 nM (0.047 ppb), while the high selectivity to UO22+ over other metal ions was fully preserved. The method was also successfully applied for the detection of UO22+-spiked environmental water samples to demonstrate its practical usefulness.


Assuntos
DNA Catalítico/química , Espectrometria de Fluorescência/métodos , Compostos de Urânio/análise , Sequência de Bases , Catálise , Água Potável/análise , Corantes Fluorescentes/química , Lagos/análise , Limite de Detecção , Naftiridinas/química , RNA/química , Compostos de Urânio/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
18.
Chemistry ; 25(36): 8570-8578, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30908736

RESUMO

Some phosphoproteins such as osteopontin (OPN) have been identified as high-affinity uranyl targets. However, the binding sites required for interaction with uranyl and therefore involved in its toxicity have not been identified in the whole protein. The biomimetic approach proposed here aimed to decipher the nature of these sites and should help to understand the role of the multiple phosphorylations in UO2 2+ binding. Two hyperphosphorylated cyclic peptides, pS168 and pS1368 containing up to four phosphoserine (pSer) residues over the ten amino acids present in the sequences, were synthesized with all reactions performed in the solid phase, including post-phosphorylation. These ß-sheet-structured peptides present four coordinating residues from four amino acid side chains pointing to the metal ion, either three pSer and one glutamate in pS168 or four pSer in pS1368 . Significantly, increasing the number of pSer residues up to four in the cyclodecapeptide scaffolds produced molecules with an affinity constant for UO2 2+ that is as large as that reported for osteopontin at physiological pH. The phosphate-rich pS1368 can thus be considered a relevant model of UO2 2+ coordination in this intrinsically disordered protein, which wraps around the metal ion to gather four phosphate groups in the UO2 2+ coordination sphere. These model hyperphosphorylated peptides are highly selective for UO2 2+ with respect to endogenous Ca2+ , which makes them good starting structures for selective UO2 2+ complexation.


Assuntos
Osteopontina/química , Compostos de Urânio/química , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Dicroísmo Circular , Osteopontina/metabolismo , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Compostos de Urânio/metabolismo
19.
J Vis Exp ; (144)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30855566

RESUMO

We describe a method to produce U2O5 films in situ using the Labstation, a modular machine developed at JRC Karlsruhe. The Labstation, an essential part of the Properties of Actinides under Extreme Conditions laboratory (PAMEC), allows the preparation of films and studies of sample surfaces using surface analytical techniques such as X-ray and ultra-violet photoemission spectroscopy (XPS and UPS, respectively). All studies are made in situ, and the films, transferred under ultra-high vacuum from their preparation to an analyses chamber, are never in contact with the atmosphere. Initially, a film of UO2 is prepared by direct current (DC) sputter deposition on a gold (Au) foil then oxidized by atomic oxygen to produce a UO3 film. This latter is then reduced with atomic hydrogen to U2O5. Analyses are performed after each step involving oxidation and reduction, using high-resolution photoelectron spectroscopy to examine the oxidation state of uranium. Indeed, the oxidation and reduction times and corresponding temperature of the substrate during this process have severe effects on the resulting oxidation state of the uranium. Stopping the reduction of UO3 to U2O5 with single U(V) is quite challenging; first, uranium-oxygen systems exist in numerous intermediate phases. Second, differentiation of the oxidation states of uranium is mainly based on satellite peaks, whose intensity peaks are weak. Also, experimenters should be aware that X-ray spectroscopy (XPS) is a technique with an atomic sensitivity of 1% to 5%. Thus, it is important to obtain a complete picture of the uranium oxidation state with the entire spectra obtained on U4f, O1s, and the valence band (VB). Programs used in the Labstation include a linear transfer program developed by an outside company (see Table of Materials) as well as data acquisition and sputter source programs, both developed in-house.


Assuntos
Hidrogênio/química , Oxigênio/química , Compostos de Urânio/química , Eletricidade , Oxirredução , Espectroscopia Fotoeletrônica , Temperatura
20.
Chemosphere ; 223: 351-357, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784741

RESUMO

At the Department of Energy (DOE) managed Savannah River Site (SRS), uranium and other heavy metals continue to pose threats to the ecosystem health and processes. In the oxic soil of this site, uranium is present primarily as soluble salts of the uranyl ion (i.e., U(VI) or UO22+). Although UO22+ has a strong sorption to the soil, the mobile indigenous bacteria may facilitate its transport. On the contrary, precipitation of UO22+ with phosphate has been found to be an alternative remediation strategy. This research investigated the effects of mobile bacteria and phytate on UO22+ transport at SRS in column experiments. It was discovered that UO22+ can barely be mobilized by de-ionized water but can be significantly transported with the aid of mobile indigenous bacteria. UO22+ had the most facilitated transport observation when it reached equilibrium with the bacteria before the transport. When UO22+ and bacterial were introduced to the soil at the same time or UO22+ was pre-deposited in the soil, the facilitated transport was less pronounced. In the presence of phytate, bacterial-facilitated UO22+ transport was hindered. pH was found to play the key role for UO22+ immobilization in the presence of phytate. The immobilization of UO22+ with the addition of phytate increased with the increase of pH within the pH range of this study because of the impact of pH on the solubility of UO2(OH)2. Phytate promoted UO2--PO43- complex and/or [Ca(UO2)2(PO4)2] formation, leading to enhanced UO22+ immobilization in the SRS soil.


Assuntos
Bactérias/metabolismo , Ácido Fítico/farmacologia , Rios/química , Urânio/análise , Concentração de Íons de Hidrogênio , Imobilização , Fosfatos/química , Solo/química , Solubilidade , Compostos de Urânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...